Latest episodes of the podcast Combined Calculus (Chapters 3 - 6)
- Chapter 6.2: Partial Derivatives - 07) Cobb Douglas Production Function
- Chapter 6.2: Partial Derivatives - 11) Utility Function Example
- Chapter 3.1: Extrema of a Function - 01) Continuous Functions and Intervals
- Chapter 3.1: Extrema of a Function - 02) Maximums and Minimums
- Chapter 5.1: Antidifferentiation - Integration - 01) Antidifferentiation
- Chapter 3.1: Extrema of a Function - 06) Example 2 and 3
- Chapter 3.2: First Derivative Test - 01) First Derivative test
- Chapter 3.6: Linearization and Differentials - 01) Linearization
- Chapter 3.4: Geometric Optimization Problems - 01) Examples 1 and 2
- Chapter 3.1: Extrema of a Function - 05) Critical Numbers and Points
- Chapter 3.1: Extrema of a Function - 03) Extreme Value Theorem
- Chapter 3.2: First Derivative Test - 02) Examples 1 and 2
- Chapter 4.1: Inverse Functions - 01) intro
- Chapter 3.6: Linearization and Differentials - 02) Example 1
- Chapter 3.1: Extrema of a Function - 04) Relative Max. and Min.
- Chapter 4.1: Inverse Functions - 11) Derivative of Inverse Function
- Chapter 4.1: Inverse Functions - 02) Example 1
- Chapter 3.1: Extrema of a Function - 07) Finding Extreme Values
- Chapter 3.5: Business and Economic Optimization Problems - 06) Elasticity of Demand
- Chapter 5.3: The Substitution Method - 01) The Substitution Method
- Chapter 3.6: Linearization and Differentials - 03) Examples 2 and 3
- Chapter 3.6: Linearization and Differentials - 04) Differentials
- Chapter 3.3: Concavity and the Second Derivative - 05) Concavity and Points of Inflection
- Chapter 4.4: The Derivative of e - 01) Investigating Derivative of e to x
- Chapter 5.4: Approximation of Areas - 01) Approximation of Areas
- Chapter 3.1: Extrema of a Function - 08) Critical Point Test Theroem
- Chapter 3.1: Extrema of a Function - 09) Example 6
- Chapter 6.5: Economic Applications - 04) Cobb Douglas Production Example
- Chapter 4.5: Logarithmic Functions - 01) Introduction to Logs
- Chapter 5.5: Sigma Notation and Areas - 01) Sigma Notation and Area
- Chapter 5.2: Applications of Antidifferentiation - 02) Solving Differential Equations
- Chapter 3.4: Geometric Optimization Problems - 02) Example 3: Rancher
- Chapter 3.5: Business and Economic Optimization Problems - 01) Example 1
- Chapter 3.3: Concavity and the Second Derivative - 01) Higher Order Derivatives
- Chapter 3.5: Business and Economic Optimization Problems - 07) Elasticity of Demand Revisited
- Chapter 4.2: Exponential Functions - 01) A New Function
- Chapter 4.2: Exponential Functions - 02) Exploring Exponential Functions
- Chapter 5.3: The Substitution Method - 02) Examples
- Chapter 4.2: Exponential Functions - 05) Solving Special Exponential Equations
- Chapter 5.1: Antidifferentiation - Integration - 02) More Differentiation Practice
- Chapter 3.3: Concavity and the Second Derivative - 02) Example 2
- Chapter 5.1: Antidifferentiation - Integration - 03) Using the Sum/Difference Rule
- Chapter 3.5: Business and Economic Optimization Problems - 02) Example 2: Bicycles
- Chapter 4.4: The Derivative of e - 02) Example 1
- Chapter 3.3: Concavity and the Second Derivative - 06) Concavity and 2nd Derivative
- Chapter 3.3: Concavity and the Second Derivative - 07) Example 5
- Chapter 5.1: Antidifferentiation - Integration - 04) Results with ln "x" and e
- Chapter 5.3: The Substitution Method - 03) Technique of Substitution
- Chapter 3.6: Linearization and Differentials - 05) Example not in textbook
- Chapter 5.5: Sigma Notation and Areas - 02) Practice with Summation
- Chapter 4.1: Inverse Functions - 07) One to One Example
- Chapter 5.4: Approximation of Areas - 02) Endpoints
- Chapter 5.7: Substitution and Properties of the Definite Integral - 01) Substitution and Properties of the Definite Integra
- Chapter 4.1: Inverse Functions - 03) Composition Property
- Chapter 5.6: The Definite Integral - 01) The Definite Integral and Fundamental Theorem
- Chapter 3.2: First Derivative Test - 03) Example 3
- Chapter 4.2: Exponential Functions - 06) Exponential Functions from Data
- Chapter 4.5: Logarithmic Functions - 02) Decay Example: Solve for t, Part 1
- Chapter 4.1: Inverse Functions - 04) Example 2
- Chapter 4.1: Inverse Functions - 12) Practice of Inverse Prime
- Chapter 4.6: Properties of Logarithmic Functions - 01) Properties of Logs
- Chapter 4.4: The Derivative of e - 03) Example 2
- Chapter 5.2: Applications of Antidifferentiation - 01) Graphs and Particular Solutions
- Chapter 4.1: Inverse Functions - 10) Practice with Inverses
- Chapter 4.4: The Derivative of e - 06) Implicit Differentiation
- Chapter 4.2: Exponential Functions - 08) Growth Decay Formulas
- Chapter 4.1: Inverse Functions - 05) Practice 1
- Chapter 4.2: Exponential Functions - 03) Practice
- Chapter 5.5: Sigma Notation and Areas - 03) Area Under a Curve
- Chapter 4.4: The Derivative of e - 04) Example 3
- Chapter 5.8: Applications of the Definite Integral - 05) Consumer Surplus
- Chapter 5.4: Approximation of Areas - 03) Practice with Endpoints and Midpoints
- Chapter 4.3: The Number e - 01) Matching the Graphs of Exp Functions
- Chapter 5.2: Applications of Antidifferentiation - 03) Motion Equations: Part 1
- Chapter 3.4: Geometric Optimization Problems - 03) Example 4: Open Top
- Chapter 5.2: Applications of Antidifferentiation - 06) Separable Differential Equations
- Chapter 4.5: Logarithmic Functions - 04) Inverse y equals 2 to x
- Chapter 3.2: First Derivative Test - 04) Example 4
- Chapter 5.1: Antidifferentiation - Integration - 06) Families of Antiderivatives
- Chapter 5.2: Applications of Antidifferentiation - 05) Marginal Cost and Revenue
- Chapter 3.3: Concavity and the Second Derivative - 08) 2nd Derivative Test for Relative Extrema
- Chapter 4.3: The Number e - 02) Compound Interest
- Chapter 4.3: The Number e - 03) Discovering e
- Chapter 5.6: The Definite Integral - 02) Practice 1
- Chapter 3.3: Concavity and the Second Derivative - 09) Example 6
- Chapter 4.5: Logarithmic Functions - 06) Practice evaluating logs
- Chapter 5.5: Sigma Notation and Areas - 04) Example 1
- Chapter 3.3: Concavity and the Second Derivative - 03) Example 3
- Chapter 4.1: Inverse Functions - 08) One to One Definition
- Chapter 3.2: First Derivative Test - 05) Example 5
- Chapter 3.5: Business and Economic Optimization Problems - 03) Example 3: Average Cost
- Chapter 3.6: Linearization and Differentials - 09) Differential Formulas
- Chapter 4.2: Exponential Functions - 07) Exponential Turtle Example
- Chapter 4.4: The Derivative of e - 05) Example 4
- Chapter 4.6: Properties of Logarithmic Functions - 02) Multiplication Property of Logs
- Chapter 5.3: The Substitution Method - 05) Practice Using Substitution
- Chapter 4.1: Inverse Functions - 09) One to One Practice
- Chapter 3.6: Linearization and Differentials - 06) Example 5: Bacteria
- Chapter 3.4: Geometric Optimization Problems - 04) Example 5: River
- Chapter 3.6: Linearization and Differentials - 07) Relative Change
- Chapter 5.3: The Substitution Method - 04) Generalized Rules
- Chapter 4.5: Logarithmic Functions - 12) Derivative of f of x
- Chapter 5.3: The Substitution Method - 06) More Practice wtih Substitution
- Chapter 3.3: Concavity and the Second Derivative - 04) Example 4
- Chapter 4.2: Exponential Functions - 04) Practice 2
- Chapter 4.5: Logarithmic Functions - 03) Decay Example: Solve for t, Part 2
- Chapter 4.1: Inverse Functions - 06) Practice 2
- Chapter 3.2: First Derivative Test - 06) Example 6
- Chapter 3.6: Linearization and Differentials - 08) Analysis of E
- Chapter 5.7: Substitution and Properties of the Definite Integral - 04) Derivative of Definite Integral
- Chapter 5.6: The Definite Integral - 05) Area Problem
- Chapter 6.4: The Method of Lagrange Multipliers - 01) Lagrange Multipliers: Example 1
- Chapter 4.6: Properties of Logarithmic Functions - 04) Practice with Properties
- Chapter 4.3: The Number e - 04) Practice Compound Continuously
- Chapter 4.6: Properties of Logarithmic Functions - 08) Solving Logarithmic Equations
- Chapter 4.5: Logarithmic Functions - 13) Generalized Logorithmic
- Chapter 5.7: Substitution and Properties of the Definite Integral - 03) Average Value
- Chapter 4.6: Properties of Logarithmic Functions - 09) Solving Exponential Equations
- Chapter 4.6: Properties of Logarithmic Functions - 03) Division Property of Logs
- Chapter 3.3: Concavity and the Second Derivative - 14) Implicit Differentiation
- Chapter 4.6: Properties of Logarithmic Functions - 05) Discovering Exponential Property
- Chapter 3.5: Business and Economic Optimization Problems - 04) Example 4: Stereos
- Chapter 4.7: Applications of Exponential and Logarithmic Functions - 04) Radioactive Decay
- Chapter 5.7: Substitution and Properties of the Definite Integral - 02) Even and Odd Functions
- Chapter 3.5: Business and Economic Optimization Problems - 08) Relative Change
- Chapter 5.8: Applications of the Definite Integral - 02) Example 1
- Chapter 4.3: The Number e - 05) Graph of e to x
- Chapter 5.6: The Definite Integral - 03) Practice 2
- Chapter 4.7: Applications of Exponential and Logarithmic Functions - 02) Investment Example
- Chapter 4.6: Properties of Logarithmic Functions - 07) Derivatives Using Properties
- Chapter 4.4: The Derivative of e - 07) Extrema and Concave Graphs
- Chapter 5.8: Applications of the Definite Integral - 01) Introduction
- Chapter 4.5: Logarithmic Functions - 05) Inverse y equals 10 to x
- Chapter 5.6: The Definite Integral - 04) Properties of the Definite Integral
- Chapter 4.6: Properties of Logarithmic Functions - 14) Logarithmic Differentiation
- Chapter 4.6: Properties of Logarithmic Functions - 12) Change of Base
- Chapter 5.2: Applications of Antidifferentiation - 04) Motion Equations: Part 2
- Chapter 4.5: Logarithmic Functions - 08) Logorithms ph
- Chapter 6.2: Partial Derivatives - 08) Example 8
- Chapter 3.3: Concavity and the Second Derivative - 10) Example 8
- Chapter 4.7: Applications of Exponential and Logarithmic Functions - 01) Introduction
- Chapter 3.5: Business and Economic Optimization Problems - 05) Example 5: Theatre
- Chapter 5.5: Sigma Notation and Areas - 05) Example 2
- Chapter 4.5: Logarithmic Functions - 07) Calc. Practice: Napiers Bones
- Chapter 4.5: Logarithmic Functions - 10) y equals in x minus 1
- Chapter 4.6: Properties of Logarithmic Functions - 13) Derivative and Change of Base
- Chapter 4.7: Applications of Exponential and Logarithmic Functions - 03) Bacterial Growth Example
- Chapter 5.8: Applications of the Definite Integral - 03) Example 2
- Chapter 4.5: Logarithmic Functions - 09) Graphs and transformation
- Chapter 5.8: Applications of the Definite Integral - 07) Continuous Income Flow
- Chapter 4.6: Properties of Logarithmic Functions - 06) Using the Property
- Chapter 4.5: Logarithmic Functions - 11) y equlas in plus minus e
- Chapter 6.1: Functions of Several Variables - 01) Example 1 - Function of 2 Variables
- Chapter 4.6: Properties of Logarithmic Functions - 10) t in Compound Interest Problems
- Chapter 5.8: Applications of the Definite Integral - 06) Producer Surplus
- Chapter 6.2: Partial Derivatives - 01) Notation and Example 1
- Chapter 3.3: Concavity and the Second Derivative - 11) Example 10
- Chapter 5.8: Applications of the Definite Integral - 04) Example 3
- Chapter 6.5: Economic Applications - 01) Product Example 1
- Chapter 3.3: Concavity and the Second Derivative - 13) Example 12
- Chapter 4.7: Applications of Exponential and Logarithmic Functions - 05) Carbon Dating
- Chapter 4.6: Properties of Logarithmic Functions - 11) Solving for r and t
- Chapter 6.2: Partial Derivatives - 12) Higher Order Example 1
- Chapter 6.5: Economic Applications - 06) Utility Function Example
- Chapter 3.3: Concavity and the Second Derivative - 12) Example 11
- Chapter 4.7: Applications of Exponential and Logarithmic Functions - 06) Logistical Growth and Richtor Scale
- Chapter 4.7: Applications of Exponential and Logarithmic Functions - 07) Sea Lion Hint
- Chapter 6.2: Partial Derivatives - 02) Examples 2 and 3
- Chapter 6.2: Partial Derivatives - 10) Level Indifference Curve
- Chapter 6.2: Partial Derivatives - 09) Example 9
- Chapter 6.1: Functions of Several Variables - 03) Difference Quotients
- Chapter 6.4: The Method of Lagrange Multipliers - 02) Example 2
- Chapter 6.5: Economic Applications - 05) The Marginal Rate of Substitution
- Chapter 5.8: Applications of the Definite Integral - 08) Probability Density Functions
- Chapter 6.1: Functions of Several Variables - 02) Example 2 - Function of 3 Variables
- Chapter 6.2: Partial Derivatives - 05) Level Curves / Contours
- Chapter 6.4: The Method of Lagrange Multipliers - 03) Example 3
- Chapter 6.3: Extrema - 02) Saddle Points and Example 1
- Chapter 6.3: Extrema - 10) Open Rectangular Box Example
- Chapter 6.3: Extrema - 06) Second Partial Derivatives
- Chapter 6.4: The Method of Lagrange Multipliers - 04) Example 4
- Chapter 6.3: Extrema - 01) Definitions
- Chapter 6.2: Partial Derivatives - 13) Higher Order Example 2
- Chapter 6.3: Extrema - 03) Example 2
- Chapter 6.5: Economic Applications - 02) Product Example 2
- Chapter 6.1: Functions of Several Variables - 04) Three Dimensional Coordinates
- Chapter 6.2: Partial Derivatives - 03) Visualization and Example 4
- Chapter 6.2: Partial Derivatives - 04) Examples 5 and 6
- Chapter 6.5: Economic Applications - 03) Product Example 3
- Chapter 6.2: Partial Derivatives - 06) Example 7
- Chapter 6.3: Extrema - 04) Example 3
- Chapter 6.3: Extrema - 07) Example 5
- Chapter 6.3: Extrema - 08) Example 6
- Chapter 6.3: Extrema - 09) Example 7
- Chapter 6.3: Extrema - 05) Example 4