Listen "Multi-Task Learning"
Episode Synopsis
Multi-task learning (MTL) is a machine learning approach where a model learns multiple tasks simultaneously, leveraging the shared information between related tasks to improve generalization. MTL can be motivated by human learning and is considered a form of inductive transfer. Two common methods for MTL in deep learning are hard and soft parameter sharing. Hard parameter sharing involves sharing hidden layers across tasks, while soft parameter sharing utilizes separate models for each task with regularized parameters. MTL works through mechanisms like implicit data augmentation, attention focusing, eavesdropping, representation bias, and regularization. In addition, auxiliary tasks can help improve the performance of the main task in MTL.
More episodes of the podcast Large Language Model (LLM) Talk
Kimi K2
22/07/2025
Mixture-of-Recursions (MoR)
18/07/2025
MeanFlow
10/07/2025
Mamba
10/07/2025
LLM Alignment
14/06/2025
Why We Think
20/05/2025
Deep Research
12/05/2025
vLLM
04/05/2025
Qwen3: Thinking Deeper, Acting Faster
04/05/2025
ZARZA We are Zarza, the prestigious firm behind major projects in information technology.