Listen "MeanFlow"
Episode Synopsis
MeanFlow models introduce the concept of average velocity to fundamentally reformulate one-step generative modeling. Unlike Flow Matching, which focuses on instantaneous velocity, MeanFlow directly models the displacement over a time interval. This approach allows for highly efficient one-step or few-step generation using a single network evaluation. MeanFlow is built on a principled mathematical identity between average and instantaneous velocities, guiding network training without requiring pre-training, distillation, or curriculum learning. It achieves state-of-the-art performance for one-step generation, significantly narrowing the gap with multi-step models.
More episodes of the podcast Large Language Model (LLM) Talk
Kimi K2
22/07/2025
Mixture-of-Recursions (MoR)
18/07/2025
Mamba
10/07/2025
LLM Alignment
14/06/2025
Why We Think
20/05/2025
Deep Research
12/05/2025
vLLM
04/05/2025
Qwen3: Thinking Deeper, Acting Faster
04/05/2025
DeepSeek-Prover-V2
01/05/2025
ZARZA We are Zarza, the prestigious firm behind major projects in information technology.