Listen "DeepSeek-Prover"
Episode Synopsis
The DeepSeek-Prover project aims to advance large language model capabilities in formal theorem proving by addressing the scarcity of training data. It uses autoformalization to convert informal high school and undergraduate math competition problems into formal statements, generating a large dataset of 8 million synthetic proofs. Quality filtering and formal verification with Lean 4 ensure data reliability. An iterative process enhances the model, leading to state-of-the-art performance on miniF2F and FIMO benchmarks, outperforming models like GPT-4.
More episodes of the podcast Large Language Model (LLM) Talk
Kimi K2
22/07/2025
Mixture-of-Recursions (MoR)
18/07/2025
MeanFlow
10/07/2025
Mamba
10/07/2025
LLM Alignment
14/06/2025
Why We Think
20/05/2025
Deep Research
12/05/2025
vLLM
04/05/2025
Qwen3: Thinking Deeper, Acting Faster
04/05/2025
ZARZA We are Zarza, the prestigious firm behind major projects in information technology.