How etcd Solved Its Knowledge Drain with Deterministic Testing

05/12/2025 21 min Episodio 1571
How etcd Solved Its Knowledge Drain with Deterministic Testing

Listen "How etcd Solved Its Knowledge Drain with Deterministic Testing"

Episode Synopsis

The etcd project — a distributed key-value store older than Kubernetes — recently faced significant challenges due to maintainer turnover and the resulting loss of unwritten institutional knowledge. Lead maintainer Marek Siarkowicz explained that as longtime contributors left, crucial expertise about testing procedures and correctness guarantees disappeared. This gap led to a problematic release that introduced critical reliability issues, including potential data inconsistencies after crashes.To rebuild confidence in etcd’s correctness, the new maintainer team introduced “robustness testing,” creating a framework inspired by Jepsen to validate both basic and distributed-system behavior. Their goal was to ensure linearizability, the “Holy Grail” of distributed systems, which required developing custom failure-injection tools and teaching the community how to debug complex scenarios.The team later partnered with Antithesis to apply deterministic simulation testing, enabling fully reproducible execution paths and easier detection of subtle race conditions. This approach helped codify implicit knowledge into explicit properties and assertions. Siarkowicz emphasized that such rigorous testing is essential for safeguarding the sensitive “core” of large open source projects, ensuring correctness even as maintainers change.Learn more from The New Stack about the etcd projectTutorial: Install a Highly Available K3s Cluster at the Edge Join our community of newsletter subscribers to stay on top of the news and at the top of your game.   Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.

More episodes of the podcast The New Stack Podcast