Listen "GRPO (Group Relative Policy Optimization)"
Episode Synopsis
Group Relative Policy Optimization (GRPO) is a reinforcement learning algorithm that enhances mathematical reasoning in large language models (LLMs). It is like training students in a study group, where they learn by comparing answers without a tutor. GRPO eliminates the need for a critic model, unlike Proximal Policy Optimization (PPO), making it more resource efficient. It calculates advantages based on relative rewards within the group and directly adds KL divergence to the loss function. GRPO uses both outcome and process supervision, and can be applied iteratively, further enhancing performance. This approach is effective at improving LLMs' math skills with reduced training resources.
More episodes of the podcast Large Language Model (LLM) Talk
Kimi K2
22/07/2025
Mixture-of-Recursions (MoR)
18/07/2025
MeanFlow
10/07/2025
Mamba
10/07/2025
LLM Alignment
14/06/2025
Why We Think
20/05/2025
Deep Research
12/05/2025
vLLM
04/05/2025
Qwen3: Thinking Deeper, Acting Faster
04/05/2025
ZARZA We are Zarza, the prestigious firm behind major projects in information technology.