Listen "Normal terms are typable with intersection types"
Episode Synopsis
I sketch the argument that pure lambda terms in normal form are typable using intersection types. This completes the argument started in the previous episode, that intersection types are complete for normalizing terms: normal forms are typable, and typing is preserved by beta-expansion. Hence any normalizing term is typable (since it reduces to a normal form by definition, and from this normal form we can walk typing back to the term).
More episodes of the podcast Iowa Type Theory Commute
Measure Functions and Termination of STLC
14/11/2025
Schematic Affine Recursion, Oh My!
22/08/2025
The Stunner: Linear System T is Diverging!
19/08/2025
Terminating Computation First?
01/08/2025
A Measure-Based Proof of Finite Developments
16/04/2025
Nominal Isabelle/HOL
31/01/2025
The Locally Nameless Representation
02/01/2025
ZARZA We are Zarza, the prestigious firm behind major projects in information technology.