Listen "Schematic Affine Recursion, Oh My!"
Episode Synopsis
To solve the problem raised in the last episode, I propose schematic affine recursion. We saw that affine lambda calculus (where lambda-bound variables are used at most once) plus structural recursion does not enforce termination, even if you restrict the recursor so that the function to be iterated is closed when you reduce ("closed at reduction"). You have to restrict it so that recursion terms are disallowed entirely unless the function to be iterated is closed ("closed at construction"). But this prevents higher-order functions like map, which need to repeat a computation involving a variable f to be mapped over the elements of a list. The solution is to allow schematic definition of terms, using schema variables ranging over closed terms.
More episodes of the podcast Iowa Type Theory Commute
Measure Functions and Termination of STLC
14/11/2025
The Stunner: Linear System T is Diverging!
19/08/2025
Terminating Computation First?
01/08/2025
A Measure-Based Proof of Finite Developments
16/04/2025
Nominal Isabelle/HOL
31/01/2025
The Locally Nameless Representation
02/01/2025
POPLmark Reloaded, Part 2
22/12/2024
ZARZA We are Zarza, the prestigious firm behind major projects in information technology.