Listen "The Network Diversion Problem"
Episode Synopsis
In this episode, Professor Pål Grønås Drange from the University of Bergen, introduces the field of Parameterized Complexity - a powerful framework for tackling hard computational problems by focusing on specific structural aspects of the input. This framework allows researchers to solve NP-complete problems more efficiently when certain parameters, like the structure of the graph, are "well-behaved". At the center of the discussion is the network diversion problem, where the goal isn't to block all routes between two points in a network, but to force flow - such as traffic, electricity, or data - through a specific path. While this problem appears deceptively similar to the classic "Min.Cut/Max.Flow" algorithm, it turns out to be much harder and, in general, its complexity is still unknown. Parameterized complexity plays a key role here by offering ways to make the problem tractable under constraints like low treewidth or planarity, which often exist in real-world networks like road systems or utility grids. Listeners will learn how vulnerability measures help identify weak points in networks, such as geopolitical infrastructure (e.g., gas pipelines like Nord Stream). Follow out guest: Pål Grønås Drange
More episodes of the podcast Data Skeptic
Video Recommendations in Industry
26/12/2025
Eye Tracking in Recommender Systems
18/12/2025
Cracking the Cold Start Problem
08/12/2025
Shilling Attacks on Recommender Systems
05/11/2025
Music Playlist Recommendations
29/10/2025
Bypassing the Popularity Bias
15/10/2025
Sustainable Recommender Systems for Tourism
09/10/2025
Interpretable Real Estate Recommendations
22/09/2025
ZARZA We are Zarza, the prestigious firm behind major projects in information technology.