Listen "From Identical Particles to Frictionless Flow"
Episode Synopsis
John Chalker discusses how the laws of quantum mechanics lead us from the microscopic world to macroscopic phenomena. The notion that atoms of a given isotope are indistinguishable has profound consequences in the quantum world. For liquids made of identical bosons, indistinguishability forces the particles into a quantum condensate at low temperature, where they all dance in perfect synchrony. Treated gently, such a condensate has no viscosity: once it is set in motion --say around a circular pipe -- flow will persist indefinitely (so long as the fluid is kept sufficiently cold!).
More episodes of the podcast Theoretical Physics - From Outer Space to Plasma
Nonlinear dynamics of active particles
07/05/2025
The physics of “flat” electrons
07/05/2025
How to program a quantum computer
07/05/2025
Topology in the Physics of Condensed Matter
21/02/2025
The Hubble Tension
15/11/2024
Chirality in living systems
11/06/2024
Imaging living systems
11/06/2024
ZARZA We are Zarza, the prestigious firm behind major projects in information technology.