Listen "Abhishek Naik on Continuing RL & Average Reward"
Episode Synopsis
Abhishek Naik was a student at University of Alberta and Alberta Machine Intelligence Institute, and he just finished his PhD in reinforcement learning, working with Rich Sutton. Now he is a postdoc fellow at the National Research Council of Canada, where he does AI research on Space applications. Featured References Reinforcement Learning for Continuing Problems Using Average Reward Abhishek Naik Ph.D. dissertation 2024 Reward Centering Abhishek Naik, Yi Wan, Manan Tomar, Richard S. Sutton 2024 Learning and Planning in Average-Reward Markov Decision Processes Yi Wan, Abhishek Naik, Richard S. Sutton 2020 Discounted Reinforcement Learning Is Not an Optimization Problem Abhishek Naik, Roshan Shariff, Niko Yasui, Hengshuai Yao, Richard S. Sutton 2019 Additional References Explaining dopamine through prediction errors and beyond, Gershman et al 2024 (proposes Differential-TD-like learning mechanism in the brain around Box 4)
More episodes of the podcast TalkRL: The Reinforcement Learning Podcast
Danijar Hafner on Dreamer v4
09/11/2025
Jake Beck, Alex Goldie, & Cornelius Braun on Sutton's OaK, Metalearning, LLMs, Squirrels @ RLC 2025
19/08/2025
Thomas Akam on Model-based RL in the Brain
03/08/2025
NeurIPS 2024 - Posters and Hallways 3
09/03/2025
NeurIPS 2024 - Posters and Hallways 2
04/03/2025
ZARZA We are Zarza, the prestigious firm behind major projects in information technology.