Catherine Yeo: Fairness in AI and Algorithms

22/09/2020 1h 3min Episodio 5
Catherine Yeo: Fairness in AI and Algorithms

Listen "Catherine Yeo: Fairness in AI and Algorithms"

Episode Synopsis

Catherine Yeo is a Harvard undergrad studying Computer Science. She's previously worked for Apple, IBM, and MIT CSAIL in AI research and engineering roles. She writes about machine learning in Towards Data Science and in her new publication Fair Bytes.Learn more about Catherine: http://catherineyeo.tech/Read Fair Bytes: http://fairbytes.org/Want to level-up your skills in machine learning and software engineering? Subscribe to our newsletter: https://mlengineered.ck.page/943aa3fd46Take the Giving What We Can Pledge: https://www.givingwhatwecan.org/Subscribe to ML Engineered: https://mlengineered.com/listenFollow Charlie on Twitter: https://twitter.com/CharlieYouAITimestamps:(02:48) How she was first exposed to CS and ML(07:06) Teaching a high school class on AI fairness(10:12) Definition of AI fairness(16:14) Adverse outcomes if AI bias is never addressed(22:50) How do "de-biasing" algorithms work?(27:42) Bias in Natural Language Generation(36:46) State of AI fairness research(38:22) Interventions needed?(43:18) What can individuals do to reduce model bias?(45:28) Publishing Fair Bytes(52:42) Rapid Fire QuestionsLinks:Defining and Evaluating Fair Natural Language GenerationMan is to Computer Programmer as Woman is to Homemaker?Gender ShadesGPT-3 Paper: Language Models are Few Shot LearnersHow Biased is GPT-3?Reading List for Fairness in AI TopicsMachine Learning’s Obsession with Kids’ TV Show Characters

More episodes of the podcast Machine Learning Engineered