Listen "Retrieval-Augmented Generation (RAG)"
Episode Synopsis
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by connecting them to external knowledge sources. It works by retrieving relevant documents based on a user's query, using an embedding model to convert both into numerical vectors, then using a vector database to find matching content. The retrieved data is then passed to the LLM for response generation. This process improves accuracy and reduces "hallucinations" by grounding the LLM in factual, up-to-date information. RAG also increases user trust by providing source attribution, so users can verify the information.
More episodes of the podcast Large Language Model (LLM) Talk
Kimi K2
22/07/2025
Mixture-of-Recursions (MoR)
18/07/2025
MeanFlow
10/07/2025
Mamba
10/07/2025
LLM Alignment
14/06/2025
Why We Think
20/05/2025
Deep Research
12/05/2025
vLLM
04/05/2025
Qwen3: Thinking Deeper, Acting Faster
04/05/2025
ZARZA We are Zarza, the prestigious firm behind major projects in information technology.