Listen "Normalization and logical consistency"
Episode Synopsis
Discussion of the connection between normalization and logical consistency. One approach is to prove normalization and type preservation, to show (in proof-theoretic terms) that all detours can be eliminated from proofs (this is normalization) and that the resulting proof still proves the same theorem (this is type preservation). I mention an alternative I use for Cedille, which is to use a realizability semantics (often used for normalization proofs) directly to prove consistency.
More episodes of the podcast Iowa Type Theory Commute
Measure Functions and Termination of STLC
14/11/2025
Schematic Affine Recursion, Oh My!
22/08/2025
The Stunner: Linear System T is Diverging!
19/08/2025
Terminating Computation First?
01/08/2025
A Measure-Based Proof of Finite Developments
16/04/2025
Nominal Isabelle/HOL
31/01/2025
The Locally Nameless Representation
02/01/2025
ZARZA We are Zarza, the prestigious firm behind major projects in information technology.