Listen "PyTorch FSDP: Experiences on Scaling Fully Sharded Data Parallel"
Episode Synopsis
FSDP addresses memory capacity challenges by sharding parameters across devices, employs communication optimizations to enhance efficiency, includes a rate limiter feature to control memory impact, offers user-friendly APIs for easy integration, achieved promising results on large models, enables broader applications in various domains, faces challenges in mathematical equivalence and handling shared parameters, and has potential research directions in adaptive sharding strategies, new communication primitives, and combining with other parallelism paradigms.
Read full paper: https://arxiv.org/abs/2304.11277
Tags: Systems and Performance, Deep Learning, Machine Learning
More episodes of the podcast Byte Sized Breakthroughs
Zero Bubble Pipeline Parallelism
08/07/2024
The limits to learning a diffusion model
08/07/2024
ZARZA We are Zarza, the prestigious firm behind major projects in information technology.