Listen "Unbacked SymInts"
Episode Synopsis
This podcast goes over the basics of unbacked SymInts. You might want to listen to this one before listening to https://pytorch-dev-podcast.simplecast.com/episodes/zero-one-specialization Some questions we answer (h/t from Gregory Chanan): - Are unbacked symints only for export? Because otherwise I could just break / wait for the actual size. But maybe I can save some retracing / graph breaks perf if I have them too? So the correct statement is "primarily" for export?- Why am I looking into the broadcasting code at all? Naively, I would expect the export graph to be just a list of ATen ops strung together. Why do I recurse that far down? Why can't I annotate DONT_TRACE_ME_BRO?- How does 0/1 specialization fit into this? I understand we may want to 0/1 specialize in a dynamic shape regime in "eager" mode (is there a better term?), but that doesn't seem to matter for export?- So far we've mainly been talking about how to handle our own library code. There is a worry about pushing complicated constraints downstream, similar to torchscript. What constraints does this actually push?
More episodes of the podcast PyTorch Developer Podcast
Compiler collectives
04/08/2024
TORCH_TRACE and tlparse
29/04/2024
Higher order operators
21/04/2024
Inductor - Post-grad FX passes
12/04/2024
CUDA graph trees
24/03/2024
Min-cut partitioner
17/03/2024
AOTInductor
02/03/2024
Tensor subclasses and PT2
24/02/2024
Compiled autograd
19/02/2024
PT2 extension points
05/02/2024
ZARZA We are Zarza, the prestigious firm behind major projects in information technology.