Listen "A Consensus-Based Algorithm for Non-Convex Multiplayer Games: Nonlinear Oligopoly Games"
Episode Synopsis
This story was originally published on HackerNoon at: https://hackernoon.com/a-consensus-based-algorithm-for-non-convex-multiplayer-games-nonlinear-oligopoly-games.
A novel algorithm using swarm intelligence to find global Nash equilibria in nonconvex multiplayer games, with convergence guarantees and numerical experiments.
Check more stories related to gaming at: https://hackernoon.com/c/gaming.
You can also check exclusive content about #games, #consensus-based-optimization, #numerical-experiments, #zeroth-order-algorithm, #nonconvex-multiplayer-games, #global-nash-equilibria, #metaheuristics, #mean-field-convergence, and more.
This story was written by: @oligopoly. Learn more about this writer by checking @oligopoly's about page,
and for more stories, please visit hackernoon.com.
The study was conducted by Enis Chenchene, Hui Huang, Jinniao Qiu and Hui Chen. They studied the dependence of Algorithm 1 with respect to the algorithm’s parameters to solve (3.5) of good produced. They found no significant differences in the convergence behavior of anisotropic or isotropic dynamics.
More episodes of the podcast Gaming Tech Brief By HackerNoon
The Best Weapon Skins in PUBG
25/10/2025
7 Best Fallout 4 Armor Mods in 2021
21/09/2025
The Best Minecraft Dragon Mods
19/09/2025
ZARZA We are Zarza, the prestigious firm behind major projects in information technology.