Listen "FourCastNet 3: A geometric approach to probabilistic machine-learning weather forecasting at scale "
Episode Synopsis
FourCastNet 3: A geometric approach to probabilistic machine-learning weather forecasting at scale Boris Bonev, Thorsten Kurth, Ankur Mahesh, Mauro Bisson, Jean Kossaifi, Karthik Kashinath, Anima Anandkumar, William D. Collins, Michael S. Pritchard, and Alexander Keller• FourCastNet 3 (FCN3) introduces a pioneering geometric machine learning approach for probabilistic ensemble weather forecasting. It is designed to respect spherical geometry and accurately model the spatially correlated probabilistic nature of weather, resulting in stable spectra and realistic dynamics across multiple scales. The architecture is a purely convolutional neural network tailored for spherical geometry.• Achieves superior forecasting accuracy and speed, surpassing leading conventional ensemble models and rivaling the best diffusion-based ML methods. FCN3 produces forecasts 8 to 60 times faster than these approaches; for instance, a 60-day global forecast at 0.25°, 6-hourly resolution is generated in under 4 minutes on a single GPU.• Demonstrates exceptional physical fidelity and long-term stability, maintaining excellent probabilistic calibration and realistic spectra even at extended lead times of up to 60 days. This crucial achievement mitigates issues like blurring and the build-up of small-scale noise, which challenge other machine learning models, paving the way for physically faithful data-driven probabilistic weather models.• Enables scalable and efficient operations through a novel training paradigm that combines model- and data-parallelism, allowing large-scale training on 1024 GPUs and more. All key components, including training and inference code, are fully open-source, providing transparent and reproducible tools for meteorological forecasting and atmospheric science research.
ZARZA We are Zarza, the prestigious firm behind major projects in information technology.