Listen "Auditing LLMs and Twitter"
Episode Synopsis
Our guests, Erwan Le Merrer and Gilles Tredan, are long-time collaborators in graph theory and distributed systems. They share their expertise on applying graph-based approaches to understanding both large language model (LLM) hallucinations and shadow banning on social media platforms. In this episode, listeners will learn how graph structures and metrics can reveal patterns in algorithmic behavior and platform moderation practices. Key insights include the use of graph theory to evaluate LLM outputs, uncovering patterns in hallucinated graphs that might hint at the underlying structure and training data of the models, and applying epidemic models to analyze the uneven spread of shadow banning on Twitter. ------------------------------- Want to listen ad-free? Try our Graphs Course? Join Data Skeptic+ for $5 / month of $50 / year https://plus.dataskeptic.com
More episodes of the podcast Data Skeptic
Video Recommendations in Industry
26/12/2025
Eye Tracking in Recommender Systems
18/12/2025
Cracking the Cold Start Problem
08/12/2025
Shilling Attacks on Recommender Systems
05/11/2025
Music Playlist Recommendations
29/10/2025
Bypassing the Popularity Bias
15/10/2025
Sustainable Recommender Systems for Tourism
09/10/2025
Interpretable Real Estate Recommendations
22/09/2025
ZARZA We are Zarza, the prestigious firm behind major projects in information technology.