Listen "LLM Post-Training: Reasoning, Reinforcement Learning, and Scaling"
Episode Synopsis
This podcast presents a comprehensive survey of post-training techniques for Large Language Models (LLMs), focusing on methodologies that refine these models beyond their initial pre-training. The key post-training strategies explored include fine-tuning, reinforcement learning (RL), and test-time scaling, which are critical for improving reasoning, accuracy, and alignment with user intentions. It examines various RL techniques such as Proximal Policy Optimization (PPO), Direct Preference Optimization (DPO) and Group Relative Policy Optimization (GRPO) in LLMs. The survey also investigates benchmarks and evaluation methods for assessing LLM performance across different domains, discussing challenges such as catastrophic forgetting and reward hacking. The document concludes by outlining future research directions, emphasizing hybrid approaches that combine multiple optimization strategies for enhanced LLM capabilities and efficient deployment. The aim is to guide the optimization of LLMs for real-world applications by consolidating recent research and addressing remaining challenges.
More episodes of the podcast Build Wiz AI Show
AI agent trends 2026 - Google
30/12/2025
Adaptation of Agentic AI
26/12/2025
Career Advice in AI
22/12/2025
Leadership in AI Assisted Engineering
21/12/2025
AI Consulting in Practice
19/12/2025
Google - 5 days: Prototype to Production
19/12/2025
Google - 5 days: Agent Quality
18/12/2025
ZARZA We are Zarza, the prestigious firm behind major projects in information technology.