Listen "BI NMA 03: Stochastic Processes Panel"
Episode Synopsis
Panelists:
Yael Niv.@yael_nivKonrad [email protected] BI episodes:BI 027 Ioana Marinescu & Konrad Kording: Causality in Quasi-Experiments.BI 014 Konrad Kording: Regulators, Mount Up!Sam [email protected] BI episodes:BI 095 Chris Summerfield and Sam Gershman: Neuro for AI?BI 028 Sam Gershman: Free Energy Principle & Human Machines.Tim [email protected] BI episodes:BI 035 Tim Behrens: Abstracting & Generalizing Knowledge, & Human Replay.BI 024 Tim Behrens: Cognitive Maps.
This is the third in a series of panel discussions in collaboration with Neuromatch Academy, the online computational neuroscience summer school. In this episode, the panelists discuss their experiences with stochastic processes, including Bayes, decision-making, optimal control, reinforcement learning, and causality.
The other panels:
First panel, about model fitting, GLMs/machine learning, dimensionality reduction, and deep learning.Second panel, about linear systems, real neurons, and dynamic networks.Fourth panel, about basics in deep learning, including Linear deep learning, Pytorch, multi-layer-perceptrons, optimization, & regularization.Fifth panel, about “doing more with fewer parameters: Convnets, RNNs, attention & transformers, generative models (VAEs & GANs).Sixth panel, about advanced topics in deep learning: unsupervised & self-supervised learning, reinforcement learning, continual learning/causality.
Yael Niv.@yael_nivKonrad [email protected] BI episodes:BI 027 Ioana Marinescu & Konrad Kording: Causality in Quasi-Experiments.BI 014 Konrad Kording: Regulators, Mount Up!Sam [email protected] BI episodes:BI 095 Chris Summerfield and Sam Gershman: Neuro for AI?BI 028 Sam Gershman: Free Energy Principle & Human Machines.Tim [email protected] BI episodes:BI 035 Tim Behrens: Abstracting & Generalizing Knowledge, & Human Replay.BI 024 Tim Behrens: Cognitive Maps.
This is the third in a series of panel discussions in collaboration with Neuromatch Academy, the online computational neuroscience summer school. In this episode, the panelists discuss their experiences with stochastic processes, including Bayes, decision-making, optimal control, reinforcement learning, and causality.
The other panels:
First panel, about model fitting, GLMs/machine learning, dimensionality reduction, and deep learning.Second panel, about linear systems, real neurons, and dynamic networks.Fourth panel, about basics in deep learning, including Linear deep learning, Pytorch, multi-layer-perceptrons, optimization, & regularization.Fifth panel, about “doing more with fewer parameters: Convnets, RNNs, attention & transformers, generative models (VAEs & GANs).Sixth panel, about advanced topics in deep learning: unsupervised & self-supervised learning, reinforcement learning, continual learning/causality.
More episodes of the podcast Brain Inspired
BI 228 Alex Maier: Laws of Consciousness
31/12/2025
ZARZA We are Zarza, the prestigious firm behind major projects in information technology.