Listen "Profluent’s OpenCRISPR-1 published in Nature magazine"
Episode Synopsis
Gene editing has the potential to solve fundamental challenges in agriculture, biotechnology and human health. CRISPR-based gene editors derived from microorganisms, although powerful, often show notable functional tradeoffs when ported into non-native environments, such as human cells1. Artificial-intelligence-enabled design provides a powerful alternative with the potential to bypass evolutionary constraints and generate editors with optimal properties. Here, using large language models2 trained on biological diversity at scale, we demonstrate successful precision editing of the human genome with a programmable gene editor designed with artificial intelligence. To achieve this goal, we curated a dataset of more than 1 million CRISPR operons through systematic mining of 26 terabases of assembled genomes and metagenomes. We demonstrate the capacity of our models by generating 4.8× the number of protein clusters across CRISPR–Cas families found in nature and tailoring single-guide RNA sequences for Cas9-like effector proteins. Several of the generated gene editors show comparable or improved activity and specificity relative to SpCas9, the prototypical gene editing effector, while being 400 mutations away in sequence. Finally, we demonstrate that an artificial-intelligence-generated gene editor, denoted as OpenCRISPR-1, exhibits compatibility with base editing. We release OpenCRISPR-1 to facilitate broad, ethical use across research and commercial applications.
More episodes of the podcast Air Street Press
State of AI: November 2025 newsletter
09/11/2025
The State of AI Report 2025
09/10/2025
Air Street Capital partners with NVIDIA on a £2B investment to accelerate the UK AI ecosystem
19/09/2025
Guide to AI: August 2025
03/08/2025
ZARZA We are Zarza, the prestigious firm behind major projects in information technology.